MTH 203, CALCULUS III , Exam One

Ayman Badawi

QUESTION 1. a) Find a parametric equations of the line that is perpendicular to the plane $3 x-2 y+4 z=6$ and intersects the plane at the point $(0,1,2)$
b) Find an equation of the plane P where each point in P is equidistant from the two points $(1,-4,5)$ and $(3,-2,1)$.
c) Find an equation of the plane P that contains the line $<t-1,2 t+3,5>$ and the point $(4,2,-1)$. Does P contain the vector $<10,-2,-12>$? explain

QUESTION 2. a) Given a, b, c, d are some constants where $<a t, b t, b>$ is the line of intersection of the two planes $c x+d y+d z=-4$ and $2 x-3 y+2 z=8$. Find the values of a, b, c, d.
b) Given that the two planes, $P_{1}: 2 x+y+z=1$ and $P_{2}:-2 x+y+3 z=-4$ intersects in a line L. i) Find a parametric equations of L.
ii) Find the distance between the point $(2,2,0)$ and P_{1}.
iii) Find the distance between $(2,2,0)$ and L

QUESTION 3. a) The two objects $4 x^{2}+9 y^{2}=1$ and $z=x y+2$ intersects in a curve (vector function) $r(t)$. Find a parametric equations of $r(t)$.
b) Let $r(t)=<2 t+1, \frac{e^{t}-\ln (t+1)-1}{\cos (t)-1}, t+1>$
i) Find the domain of $r(t)$.
ii) Find $\lim _{t \rightarrow 0} \quad r(t)$
c) Find the arc-length of $r(t)=<2 e^{t}, 3 e^{-t}, \sqrt{12} t>$ when t is between 0 and $\ln (0.5)$.

QUESTION 4. a)Find the area of the triangle that has the vertices $(1,2),(1,4),(0,2)$.
b) Given that the three vectors (having the same initial point), $V=<2,2,0>, W=<1,-2.0>$, and $D=<$ $1,1,-2>$ do not lie in the same plane. However, they form a parallel-pipe (let call it a twisted-cube). Find the volume of the twisted-cube.
c) Find the equations of the tangent line and the normal line to the curve $r(t)=<\sin (2 t), 2 \cos (2 t), \sqrt{3} \sin (2 t)-$ $2 \sqrt{3}>$ at the point that is determined by letting $t=\pi / 4$

Faculty information

MTH 203, Calculus III, EXAM II

Ayman Badawi

QUESTION 1. (i) Does $\lim _{(x, y) \rightarrow(0,0)} \frac{4 x y^{2}}{x^{2}+y^{2}}$ exist? if yes then find it
(ii) Find the partial derivative $d z / d x$ for $e^{z}=x y z+y z^{2}+x \ln (y)+3 z+2 x$
(iii) Linearalize $f(x, y)=y e^{2 x y}$ at $(0,1)$. Then use the linearalization to approximate $f(-0.2,1.1)$
(iv) Find the equation of the tangent plane to the solid object in 3D determined by $x^{2}+2 y+3 z x=9$ at the point $(1,1,2)$

QUESTION 2. (i) Use the chain rule to find $d z / d x$, where $z=3 x^{2}+x y^{2}+1, x=s+2 t-u, y=s t u^{2}$ when $s=4, t=2, u=1$
(ii) Given $f(x, y)=2 x e^{y-2}+x y$. Find the directional derivative $D_{u}(f)$ at the point $(1,2)$ in the direction of the vector $v=3 i+4 j$. In what direction does f have the maximum rate of change at the given point? what is the maximum change?
(iii) Let $f(x, y)=\left(y^{2}+4\right) e^{x^{2}}-6 y+10$ Find the critical points of $f(x, y)$. Does $f(x, y)$ have local min. (max) values? if yes then find them.

QUESTION 3. (i) Find the volume of the solid object that has a rectangular basis, say D, in the xy-plane where $(0,0),(1,1),(1,2)$, and $(0,1)$ are the vertices of D and the height z is a function in terms of x and y where $z=2 x+2$.
(ii) Find the volume of the solid subject that has a basis consists of all points in the upper half of the xy-plane that are enclosed between the two circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=1$, and the height z is given as a function in terms of x and y where $z=4 x^{2}+4 y^{2}$.
(iii) Find the surface area of the solid subject that has a basis consists of all points in the first quadrant of the xy-plane that are enclosed between the two graphs $y=x^{2}+24 x$ and $y=x^{2}$ where $0 \leq x \leq 2$, and the height z is given as a function in terms of x and y where $z=x^{2}+3 y$

QUESTION 4. Given the force field $F(x, y)=(1+2 x y) i+\left(x^{2}-3 y^{2}\right) j$
(i) Is $F(x, y)$ conservative? If yes, find a function $g(x, y)$ such that $\nabla g=F(x, y)$
(ii) A particle moves along line segments from $(0,0)$ to $(4,1)$ to $(3,4)$ to $(2,2)$ (counter clock-wise). Find the work done by the above force $F(x, y)$ in moving the particle along the given line segments from $(0,0)$ to $(2,2)$
(iii) Let C be the part of the curve of the ellipse $x^{2}+y^{2} / 4=1$ in the second quadrant of the xy-plane, and assume that C is positively oriented. Find the area of the side that is bounded between the function $z=-9 x y$ and C.

Faculty information

MTH 203, Calculus III, Final EXAM Fall 2013

Ayman Badawi

QUESTION 1. a) Find a vector in the same direction as $<-2,4,2>$ but has length 6 .
b) Find the angle between the two vectors $U=i+\sqrt{3} j$ and $V=i$.
c) Find the spherical coordinates and the cylindrical coordinates of the point (2,-2,1)
d) Let $b=<1,1,2>$ and $a=<2,0,4>$ find two vectors say u, v such that u is in the direction of a, v is perpendicular to a, and $u+v=b$.

QUESTION 2. Find parametric equations of the line that passes through the point $\mathrm{Q}=(1,-1,10)$ and perpendicular to the plane $\mathrm{P}: \quad 3 x-4 y=22$. Then find the distance between Q and P.

QUESTION 3. Find equations of two perpendicular planes, say P_{1} and P_{2}, that intersect in the line $\mathrm{L}:<1+2 t,-1+$ $t, 3-t>$. [Hint: There are infinitely many possibilities for P_{1} and P_{2}. You only need to give me one possibility for P_{1} and another for P_{2}].

QUESTION 4. Given $x y e^{z}+z^{2}+z x^{2}-8 y z-y^{2}+c=0$ for some constant $c, x=3 t+u, y=t^{2}-u$. Find $d z / d t$ when $t=1, u=-2$ and $z=0$. Then find the constant c.

QUESTION 5. Find all points at which the direction of the fastest change of the function $f(x, y)=0.5 x^{2}-2 x+$ $y^{2}-6 y$ is in the direction of $i+2 j$ [HINT: Recall If a vector U is in the direction of V, then $U=c V$ for some constant c]

QUESTION 6. Find an equation of the tangent plane to the surface $x^{2}+x y+y z=3 e^{x y z-1}$ at the point $(1,1,1)$.

QUESTION 7. If possible find all local minimum and maximum values of $f(x, y)=y^{2}-2 y \cos (x)$ where $0<x<4$ [hint : note that $2 \pi>4$]

QUESTION 8. Given the force field $F(x, y)=y i+5 x j$. A particle moves along line segments from $(0,3)$ to $(1,3)$ to $(4,6)$ to $(0,6)$, then back to $(0,3)$ (counter clock-wise). Find the work done by the force $F(x, y)$ in moving the particle along the given line segments from $(0,3)$ back to $(0,3)$. [Hint: Recall that if $F=A(x, y) i+B(x, y) j$, then $\left.\int_{C} F . d r=\int_{C} A(x, y) d x+B(x, y) d y\right]$

QUESTION 9. a) Given the force field $F(x, y, z)=(2 x+z) i+2 y j+(2 z+x) k$. Is $F(x, y, z)$ conservative? If yes, find a function $g(x, y, z)$ such that $\nabla g(x, y, z)=F(x, y, z)$.
b) A particle moves along line segments from $(0,0,3)$ to $(1,0,3)$ to $(4,0,6)$ to $(0,0,6)$. Find the work done by the above force $F(x, y, z)$ in moving the particle along the given line segments from $(0,0,3)$ to $(0,0,6)$.

QUESTION 10. a) Find $\iint_{S} \operatorname{curl}(F) . d S$ where S is the part of $z=10-\left(x^{2}+y^{2}\right)$ that lies above the plane $z=6$ ${ }_{\text {and }} F(x, y, z)=-2 y z i+12 x j+3 y k_{\text {(oriented upward) }}$.
b) Let F as in (a) but S be the part of of the upper half of the sphere $x^{2}+y^{2}+z^{2}=40$ that lies above the plane $z=6$ (oriented upward). Find $\iint_{S} \operatorname{curl}(F) \cdot d S$. Just write down your answer!! No WORK IS NEEDED HERE. [Hint: Just bend your head and show some respect to Stoke's Theorem]

QUESTION 11. a) Find the volume of the part of the upper half sphere $x^{2}+y^{2}+z^{2}=16$ that lies below the cone $z=\sqrt{3 x^{2}+3 y^{2}}$. Use triple integrals and spherical coordinates. JUST WRITE DOWN THE INTEGRALS AND DO NOT EVALUATE!!.
b) Find the volume of the solid that is enclosed by the cone $z=\sqrt{x^{2}+y^{2}}$ and the (upper half) sphere $x^{2}+y^{2}+$ $z^{2}=18$. Use triple integrals and cylindrical coordinates. JUST WRITE DOWN THE INTEGRALS AND DO NOT EVALUATE!!.

QUESTION 12. a) Find the volume of the solid object in 3D that has a basis D, where D is the region in the first quadrant of the xy-plane that is enclosed by the y-axis, the line $y=4$ and the line $y=x-1$. The height of the solid object is determined by $z=e^{0.5 y^{2}+y+1}$.
b) Consider the curve (in the xy-plane) $C: x=2$ where $0 \leq y \leq 4$. Find the area of the side that is between $z=2 e^{2 y+x^{2}+1}$ and the curve C.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

